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A B S T R A C T

Few-shot point cloud classification is a challenging task in 3D computer vision and has received widespread
attention from researchers. Most of the works on deep learning models rely heavily on Euclidean spatial
metrics. However, point cloud objects often have complex non-Euclidean geometric structures, with underlying
inter/intra-class hierarchical structures, which are difficult to capture by current Euclidean-based deep learning
models. Moreover, due to the lack of training samples, many few-shot learning methods often suffer from the
overfitting problem. Given the Hyperbolic metric of non-Euclidean geometry offering hierarchical structural
prior, as we assume to be able to assist FSL task, we propose Hyperbolic Prototype Rectification (HPR) for few-
shot point cloud classification, without requiring extra learnable parameter. Firstly, point clouds are embedded
into hyperbolic space to better describe hierarchical similarity relationships in data. Secondly, the HPR utilizes
hyperbolic spatial and distributional information to enhance the feature representation and improve the
generalization capability, with more appropriate hyperbolic prototypes. The few-shot classification experiments
and further ablation studies conducted on widely used point cloud datasets demonstrate the effectiveness of
our method. On the real-world ScanObjectNN(-PB) datasets, the average classification accuracy outperforms
the SOTA method by 2.08%(0.66%), respectively, indicating that the proposed HPR has great generalization
capability and strong robustness against perturbed data. Our code is available at: https://github.com/Jonathan-
UCAS/HPR.
1. Introduction

Few-shot 3D point cloud classification has received increasing at-
tention in recent years. The community has witnessed the rapid devel-
opment of 3D sensing technology, including 3D scanners, LiDARs and
stereo reconstruction, as well as the wide application of classification
task in robotics [1], autonomous driving [2], shape analysis [3], remote
sensing [4,5], etc. However, the outstanding performance of deep
learning-based methods [4] relies heavily on a large amount of labeled
data. Despite the various ways to obtain 3D point cloud data, the pro-
cess of obtaining annotated data is cumbersome and time-consuming.
Deep learning models tend to be overfitting with limited generalization
ability when encountering insufficient annotated samples. The sample
scarcity issue highlights the importance of developing few-shot learning
(FSL) [6] algorithms.

With previous success on 2D image [7,8], FSL can be introduced
for 3D point cloud tasks. It aims to enhance the generalization ability
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of the deep learning models and enable the models to perform well
even for novel classes with a few labeled samples only. Among differ-
ent approaches, metric-based FSL methods have been widely used in
existing studies because of their simplicity and effectiveness. Usually,
the samples are firstly embedded into a feature space, then unseen
query samples are classified by the nearest prototype obtained from
the network. As a representative, ProtoNet [7] simply utilized the
average of support samples of each class as prototypes and classified by
Euclidean distance of query samples and prototypes. While being effi-
cient, it is possibly biased due to the scarcity of support samples, thus
unable to accurately represent the corresponding class. To address this
issue, several works [8–10] have incorporated spatial relationships and
distributional information of query samples or used multiple prototypes
to obtain more accurate prototypes.

However, different from 2D images, 3D point cloud objects admit
complex non-Euclidean structures, with behaviors that are dynamic,
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data mining, AI training, and similar technologies. 
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Fig. 1. (a), (b) intra-class hierarchy, and (c) semantic inter-class hierarchy.
irregular, and unpredictable. In addition, 3D point cloud data gen-
erally contains position and shape information, with multiple levels
of explicit or implicit hierarchy, including the part-whole hierarchy
of objects [11,12], intra-class hierarchy in Fig. 1(a), (b), and class
semantic hierarchy in Fig. 1(c). While there have been a series of recent
works [13–15] for few-shot point cloud classification, they primarily
focus on constructing models in Euclidean space, being unable to suffi-
ciently obtain the geometric properties of point clouds, particularly the
inter/intra-object hierarchical relationships within and between point
clouds. Also, some works [14,15] require assistance from the image,
increasing computational cost. Some of them [16] are also sensitive to
noises.

FSL requires appropriate prototypes even with scarce samples,
where spatial geometric priors and structural information become
powerful assistance. The hierarchy of 3D point cloud is very useful
structural information and has been studied in many approaches [11,
17]. Existing works on point cloud FSL did not consider such hierarchy
and are mostly based on Euclidean space, which lacks such representa-
tion ability. Previous work [18] suggested that the hyperbolic space
can embed tree-like hierarchical data with lower distortion than in
Euclidean space. Based on this advantage in geometric priors, recent
works [12,16] have explored the part-whole compositional structure in
hyperbolic space.

Given that point cloud data exhibits a tree-like hierarchy, and the
huge dependence on accurate data embedding for FSL as it faces sample
scarcity, we assume that incorporating hyperbolic metrics could benefit
the 3D point cloud FSL. It leads to a more accurate feature space, thus
improving the representation ability for better performance.

In this work, we aim to 1⃝ validate the effectiveness of hyperbolic
embeddings for 3D point cloud FSL via experiments, 2⃝ propose a
framework using spatial relationship and distributional information
in hyperbolic space for prototype rectification with comprehensive
experiments to validate its effectiveness, and 3⃝ discuss the future
developments and applications. In summary, our main contributions
are as follows:

• We firstly systematically construct metric learning in hyperbolic
space for few-shot point cloud classification, considering the hi-
erarchy structure of point clouds. Hyperbolic embeddings bring
up to 1.66% accuracy improvement for 3D point cloud few-shot
learning from our experiments.

• We proposed Hyperbolic Prototype Rectification (HPR) with two
variants, the HPR-D based on spatial relationship, and the HPR-
WN based on distributional information. They both improve the
robustness of perturbations, obtaining more effective prototypes
without requiring extra training parameters. Further geometrical
analysis of our method is also performed.

• We outperform existing methods on public datasets. Specifically,
for real-world performance tested on ScanObjectNN, we achieve
state-of-the-art results among all methods. Several experiments
verify the performance and robustness of HPR.

2. Related work

In this section, we briefly review the previous representative works
on 3D point cloud classification, few-shot learning, and hyperbolic
embedding.
2 
2.1. Deep learning for 3D point cloud classification

3D point cloud classification is an important task with wide appli-
cation scenarios. There are several feature embedding manners.

For projection-based methods onto image modal, MVCNN [19]
is the early representative work using multi-view information. View-
GCN [20] follows the same manner using graph convolution. Simple-
View [21] proposes an efficient view projection module and was widely
adopted in related tasks [14].

For point-based methods using raw points only, PointNet [22]
extracts point-wise features with multi-layer perceptron (MLP) and
uses max-pooling operations to aggregate global permutation invariant
features. PointNet++ [23] considers local structures explicitly and
introduces a hierarchical aggregation paradigm for point cloud by using
local–global geometric information. PointCNN [24] uses -Conv layer
replacing MLP layer to exploit certain canonical ordering of points, pre-
serving equivariance. DGCNN [25] proposes EdgeConv, capturing local
geometric information by constructing local dynamic graphs between
base points and neighboring nodes in a specific region and extracting
permutation invariant features. KPConv [26] proposes convolution on
point cloud using similar ideas of image convolution. PointMLP [27]
proposes a full MLP architecture with a geometric affine module.
PCT [28] is a transformer-based method with the attention mechanism
inspired by EdgeConv.

For comparison, projection-based methods benefit largely from im-
age feature embedding, while point-based methods directly utilize the
properties of points, incorporating more details. All the above successes
are based on a large amount of labeled data, with cumbersome and
time-consuming annotation of training data. To alleviate this prob-
lem, introducing the FSL algorithms that have attracted widespread
attention in image tasks is considerable.

2.2. Few-shot learning for 2D image and 3D point cloud

2D image FSL. The meta-learning methods in Few-shot learning (FSL)
methods are mostly designed for image tasks, and can be catego-
rized [29] into model-based, optimization-based, and metric-based.
Model-based methods aims to adapt to new tasks by changing the
model’s learnable parameters. Optimization-based methods regard the
task as an optimization process. For example, MetaOptNet [30] incor-
porates a differentiable quadratic programming solver for a feature-
relevant linear SVM predictor with better generalization for novel
categories. Metric-based methods utilize the spatial relationship of
features as a similarity measure, being more widely used due to its
simplicity and effectiveness, in which our method is categorized. There-
fore, the appropriate distance metric is crucial to its performance. We
then review some representative metric-based methods.

Matching Network [31] adopts a bidirectional LSTM model to
extract embeddings and uses cosine distance for classification. Pro-
toNet [7] treats the mean of support samples as prototypes that repre-
sent corresponding classes, and measures the similarity of features by
Euclidean distance. However, due to the scarcity of support samples,
the resulting prototypes usually deviate significantly from the ideal
class centers. RelationNet [32] proposes a learnable metric module for
similarity scores between prototypes and query samples.
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Fig. 2. The comparison of embeddings in (a) Euclidean space, and (b) Hyperbolic space. To emphasize, all black lines are with the same hyperbolic distance in (b).
To alleviate this problem, Prototype Rectification (PR) [9] uses
query samples with pseudo labels to rectify prototypes and proposes
two bias elimination methods to rectify the offset between the support
set and query set. The prototype rectification method is semi-supervised
few-shot learning, using only the support and query set. Yang et al.
(DisCalib) [8,10] further incorporates distributional information for
new sample generation using a large amount of unlabeled data and for
semi-supervised few-shot learning. Additionally, CPN [33] learns CNN
and prototypes jointly with discriminative & generative loss for open
set recognition.

The above methods focus on image classification, with unsatisfying
performance when directly applied to 3D point clouds, as they do not
consider the unstructured property. Therefore, 3D Point Cloud FSL is
introduced.

3D point cloud FSL. Recently, researchers also considered few-shot
learning for more challenging 3D point clouds. CIA [13] firstly studies
few-shot point cloud classification systematically and proposes the
Cross-Instance Adaption module to alleviate the high intra-class vari-
ance and insignificant inter-class differences problems. ViewNet [15]
further introduces a 2D projection-based network and view pooling
block for more descriptive and distinguishing features. Yang et al.
(CrossMod) [14] fuses features from raw point cloud data and its
projection onto depth images to obtain more appropriate and ro-
bust features. The sqMA module [14] takes support-query as input
as an improvement to prototype-query of CIF module [13]. Besides,
ViewNet [15] and CrossMod [14] are projection-assisted, which may
introduce computational burden for additional operations among: (1)
2D-plane projection, (2) extra parameters for additional image back-
bone, and (3) modal fusion stage. Also, these methods are performed
in Euclidean space. GPr-Net [16] introduces hyperbolic metrics and
utilizes intrinsic geometric descriptors with lightweight architecture,
but is very sensitive to noises and other disruptions.

2.3. Hierarchical and hyperbolic embeddings

Regarding point cloud hierarchy . Hierarchy is an important and com-
monly existing multi-level structural information in 3D objects. Point-
Net++ [23] is the early hierarchy-aware method. PointGLR [11] further
concentrates on the part-whole hierarchy within objects, with hyper-
sphere mapping at different scale levels. HGNet [17] constructs local
geometry structures for hierarchical geometry.

Hyperbolic embedding . More systematically, the hyperbolic space is
especially proposed for hierarchical embedding, with a comparison to
Euclidean embedding provided in Fig. 2. Most of them use Poincaré
disk [34] with assistance of Klein model [18]. Nickel et al. [34]
firstly introduces the Poincaré disk model to learn an embedding with
latent hierarchical structures. Khrulkov et al. [18] applies the Klein
model for averaging operation. It is also proved that the Poincaré disk
has a larger representation capacity and better generalization ability
3 
than in Euclidean space and is detailed in [35] on tree-structure with
combinatorial construction. HyperVAEs [36,37] thoroughly formulates
distributional information in hyperbolic space. Recently, it has been
applied in knowledge graph [38], and temporal link prediction [39].
DHA-Net [40] combines hyperbolic metric with DGCNN for object
reconstruction.

For few-shot learning, it demonstrates promising potential as offer-
ing spatial geometric prior, without extra modules. HyperProtoNet [18]
performs few-shot image classification in hyperbolic space, benefiting
from latent hierarchical structures between images. Similarly, Hyper-
ZSL [41] is for zero-shot recognition, also preserving the hierarchical
structure of semantic classes in low dimensions. Recently, there has
been increasing attention paid to 3D point clouds. HyCoRe [12] effec-
tively leverages the properties of hyperbolic space to extract and embed
the compositional structure of point clouds, preserving the part-whole
hierarchy. GPr-Net [16] as illustrated above for few-shot learning, also
applied hyperbolic embedding and geometric descriptors.

Inspired by the above works, we perform FSL for point cloud classi-
fication in hyperbolic space to preserve the hierarchical relationship
between point cloud objects that benefit FSL, while not introducing
extra parameters to be trained or additional modules. By combin-
ing existing well-performed FSL methods in prototype rectification to
improve the robustness of previous works, leveraging the unique ad-
vantages of hyperbolic space, and systematically incorporating spatial
and distributional information, we proposed HPR in this paper.

3. Preliminaries

In this section, we present preliminaries of few-shot learning in Sec-
tion 3.1, and Hyperbolic space in Section 3.2, both establishing foun-
dations of our HPR.

3.1. Problem setting of few-shot learning for classification

We follow the same FSL setting as 2D image few-shot classifica-
tion [30] and utilize meta-learning [29] procedure to deal with the FSL
problem, the process is shown in Fig. 3.

Given a point cloud dataset with data-label pairs  = {(𝒙𝑖, 𝑦𝑖) ∣ 𝑖 =
1,… ,𝑀}, where 𝒙𝑖 ∈ R𝑑 represents the feature vector of a point cloud
object and its label 𝑦𝑖 ∈ 𝐶 as the set of class labels. The set 𝐶 is divided
into basic (train) classes 𝐶𝑏 for meta-training and novel (test) classes 𝐶𝑛
for meta-testing, where 𝐶𝑏 ∩𝐶𝑛 = ∅ and 𝐶𝑏 ∪𝐶𝑛 = 𝐶. The objective is to
initially train the model on samples from the basic classes and perform
well when tasked with new samples from the novel classes.

Meta-learning . It is usually divided into meta-training and meta-
testing, formulated as 𝑁-way 𝐾-shot (𝑁 class, each class with 𝐾
samples in support set) [6], where each task for meta-testing consists
of the labeled support set and the unlabeled query set. Generally,
each task has a small number of labeled samples to measure the
generalization ability of the model. We have: (1) Support set 𝑆 =
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Fig. 3. The Meta-Learning Process. Our proposed HPR operates in the framed part.
Fig. 4. Basic operators and their usages in hyperbolic space, including 1⃝ Möbius
Addition (subtraction form), 2⃝ Hyperbolic Distance and Average, 3⃝Exponential &
Logarithmic Mapping, and 4⃝ Parallel Transport. 𝝁 ∈ P𝑛

𝑐 , 𝝁P𝑛
𝑐 is tangent space of P𝑛

𝑐
at 𝝁, same as others.

{(𝒙𝑖𝑠 , 𝑦𝑖𝑠 )}
𝑁
𝑖=1

𝐾
𝑠=1, with 𝑁 classes each contains 𝐾 samples, and (2)

Query set 𝑄 = {(𝒙𝑖𝑞 , 𝑦𝑖𝑞 )}
𝑁
𝑖=1

𝐾+𝑄
𝑞=𝐾+1, with same 𝑁 classes each contain 𝑄

samples. We construct the input as 𝑏 = {(𝑆𝑏, 𝑄𝑏)}𝐵𝑏=1 for meta-training,
with labels of 𝑄𝑏 for supervised learning to optimize the objective
function:

(𝜃∗, 𝜙∗) = arg min
𝜃,𝜙

𝜙(𝑏; 𝜃) (1)

where 𝑏 is from the basic classes given labels, with parameter 𝜙 of the
backbone network, and 𝜃 of the classifier. 𝜙(𝑏; 𝜃) is the cross-entropy
loss:

𝜙(𝑏; 𝜃) = E𝑏
[

− log 𝑝(�̂� = 𝑐|𝒙; 𝜃)
]

,

𝑝(𝑦 = 𝑐 ∣ 𝒙; 𝜃) = 𝐒𝐨𝐟𝐭𝐦𝐚𝐱(𝐷𝜃(𝐹𝜙(𝒙))) (2)

where 𝒙 is the feature, �̂� is the predicted label, 𝐹𝜙 is embedding network
and 𝐷𝜃 is classifier. After meta-training, similarly, we construct novel
(test) tasks set as 𝑛 = {(𝑆𝑛, 𝑄𝑛)}𝑁𝑛=1 sampled from the novel classes for
meta-testing. We fix 𝜙 of 𝐹𝜙, fine-tuning for 𝜃 of 𝐷𝜃 on 𝑆𝑛 and testing
on 𝑄𝑛.

3.2. Mathematical foundations of hyperbolic geometry

Hyperbolic space is a non-Euclidean Riemannian space, possessing
constant sectional curvature of −1. There are several isomorphic models
of Hyperbolic space, such as the Poincaré disk model and Klein model,
etc. In this paper, we adapt the Poincaré disk model.

3.2.1. Poincaré disk model and basic operators
Poincaré disk model (P𝑛

𝑐 , 𝑔
P) can be defined as P𝑛

𝑐 = {𝑥 ∈ R𝑛 ∶ 𝑐 ‖𝑥‖2

< 1, 𝑐 ≥ 0}, with the Riemannian metric 𝑔P(𝑥) = 𝜆2𝒙𝑔
E, where 𝜆𝒙 =

2
1−𝑐‖𝑥‖2

is conformal factor, 𝑔E = I𝑛 is Euclidean metric tensor, and 𝑐

is the curvature parameter of Poincaré disk. Hyperbolic space differs
from the vector space defined in Euclidean space, and many operations
in Hyperbolic space can be extended with the assistance of Möbius
vector space. Here, following [18], for 𝒙, 𝒚 ∈ P𝑛

𝑐 , we briefly introduce
operations available on Poincaré disk. For a clearer understanding, we
visualize the operators in Fig. 4.
4 
Möbius addition. For 𝒙, 𝒚 ∈ P𝑛
𝑐 , the Möbius addition ⊕𝑐 is defined as:

𝒙⊕𝑐 𝒚 ∶=
(1 + 2𝑐 ⟨𝒙, 𝒚⟩ + 𝑐 ‖𝒚‖2)𝒙 + (1 − 𝑐 ‖𝒙‖2)𝒚

1 + 2𝑐 ⟨𝒙, 𝒚⟩ + 𝑐2 ‖𝒙‖2 ‖𝒚‖2
(3)

where ⟨⋅, ⋅⟩, ‖⋅‖ denotes Euclidean inner product and norm, respec-
tively.

Möbius multiplication. Given the matrix 𝐖 ∈ R𝑛′×𝑛 and 𝒙 ∈ P𝑛
𝑐 , the

Möbius multiplication ⊗𝑐 calculates multiplication in tangent space,
formulated as:

𝐖⊗𝑐 𝒙 ∶= 1
√

𝑐
tanh

(

‖𝐖𝒙‖
‖𝒙‖

tanh−1
(

√

𝑐 ‖𝒙‖
)

)

𝐖𝒙
‖𝐖𝒙‖

(4)

Hyperbolic distance. For 𝒙, 𝒚 ∈ P𝑛
𝑐 , the hyperbolic distance is obtained

as:

𝑑𝑐 (𝒙, 𝒚) ∶=
2
√

𝑐
tanh−1

(

√

𝑐 ‖
‖

−𝒙⊕𝑐 𝒚‖‖
)

(5)

Exponential & logarithmic map. It establishes a bijection between
tangent space at a point and Riemannian manifold. The exponen-
tial mapping takes a tangent vector 𝒘 ∈ 𝒙P𝑛

𝑐 to the manifold P𝑛
𝑐 ,

i.e., Exp𝒙 ∶ 𝒙P𝑛
𝑐 → P𝑛

𝑐 , as:

Exp𝑐𝒙(𝑤) ∶= 𝒙⊕𝑐

(

tanh
(

√

𝑐
𝜆𝑐𝒙 ‖𝒘‖

2

)

𝒘
√

𝑐 ‖𝒘‖

)

,

Exp𝑐𝟎(𝑤) ∶=
tanh

(

√

𝑐 ‖𝒘‖

)

√

𝑐 ‖𝒘‖

𝒘 (6)

where 𝒙P𝑛
𝑐 ≅ R𝑛 is the tangent space of the manifold P𝑛

𝑐 at 𝒙.
Therefore, Exp𝑐𝒙(𝒘) = 𝒛, 𝛾(𝟎) = 𝒙, 𝛾(1) = 𝒛, 𝛾 ′(0) = 𝑤. Exp𝑐𝟎(𝑤) is easier
to compute and more commonly used as it maps from 𝟎. Logarithmic
mapping is the inverse of the exponential map, i.e.: Log𝒙 ∶ P𝑛

𝑐 → 𝒙P𝑛
𝑐 ,

as:

Log𝑐𝒙(𝒖) =
2

√

𝑐𝜆𝑐𝒙

tanh−1 (
√

𝑐 ‖
‖

−𝒙⊕𝑐 𝒖‖‖)
‖

‖

−𝒙⊕𝑐 𝒖‖‖
(−𝒙⊕𝑐 𝒖),

Log𝑐𝟎(𝒖) =
2

√

𝑐𝜆𝑐𝟎

tanh−1 (
√

𝑐 ‖𝒖‖)
‖𝒖‖

𝒖 (7)

Averaging operation. We first give the averaging operation in the
Klein model:

𝐇𝐲𝐩𝐀𝐯𝐠-𝐊(𝒙1K,… ,𝒙𝑛K) =
𝑛
∑

𝑖=1
𝜉𝑖𝒙𝑖K∕

𝑛
∑

𝑖=1
𝜉𝑖K, (8)

where 𝒙𝑖K is the coordinate of 𝒙𝑖 in Klein model, 𝜉𝑖 =
1

√

1−𝑐‖𝒙𝑖K‖
2

is the

Lorentz factor. Owing to the isomorphism of Poincaré and Klein model,
the coordinate transform could be formed as:

𝑓K→P(𝒙K) =
𝒙K

1 +
√

1 − 𝑐 ‖
‖

𝒙K‖‖
2
, 𝑓P→K(𝒙P) =

2𝒙P
1 + 𝑐 ‖

‖

𝒙P‖‖
2
, (9)

where 𝒙P and 𝒙K are the coordinates in the Poincaré disk model and
Klein model, respectively. Therefore, we first map the points from the
Poincaré disk model to the Klein model and compute the average in the
Klein model, then map it back to the Poincaré disk model, formulated
as:

𝐇𝐲𝐩𝐀𝐯𝐠-𝐏(𝒙 ,… ,𝒙 ) = 𝑓
(

𝐇𝐲𝐩𝐀𝐯𝐠-𝐊
(

𝑓 (𝒙 ,… ,𝒙 )
))

. (10)
1 𝑛 K→P P→K 1 𝑛
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Table 1
Comparisons between operations of DGCNN in Euclidean and Hyperbolic space, 𝒙 ∈ R𝑚 , 𝒛 = Exp𝑐𝟎(𝒙) ∈ P𝑚

𝑐 . AGG(⋅) is aggregation
function, here is Max-Pooling.
Module Euclidean Hyperbolic

Linear (Euc.)/Mobius (Hyp.) 𝐖𝒙 + 𝐛 𝐖⊗𝑐 𝒙⊕𝑐 𝐛

Activation 𝜎 𝜎E(⋅) = LeakyReLU(⋅) 𝜎P(⋅) = Exp𝑐𝟎(LeakyReLU(Log
𝑐
𝟎(⋅)))

Edge Function ℎ𝛩(𝒙𝑖 ,𝒙𝑗 ) = ℎ𝛩(𝒙𝑖 ,𝒙𝑗 − 𝒙𝑖) ℎ𝛩(𝒙𝑖 ,𝒙𝑗 ) = ℎ𝛩(𝒛𝑖 , 𝒛𝑗 ⊕𝑐 (−𝒛𝑖))

EdgeConv 𝜎E(AGG(Linear(𝒙))) 𝜎P(AGG(Mobius(𝒛)))
p

4

h

b

u
f
h
i

b

4

Parallel transport . The parallel transport mapping from a vector 𝒗 ∈
𝝂P𝑛

𝑐 to another tangent space 𝝁P𝑛
𝑐 is given by:

PT𝑐
𝝂→𝝁(𝒗) = Log𝑐𝝁(𝝁⊕𝑐 Exp𝑐𝝂 (𝒗)), PT𝑐

𝟎→𝝁(𝒗) =
𝜆𝑐𝟎
𝜆𝑐𝝁

𝒗 (11)

.2.2. Hyperbolicity for quantified analysis on hierarchy
In addition to the qualitative analysis, a quantitative analysis of

he hierarchical relationships between point cloud objects can also be
onducted using the relative hyperbolicity 𝛿𝑟𝑒𝑙 to compute the similarity
etween the dataset and Hyperbolic space. We refer to [18] for the
alculation of hyperbolicity.

For metric space  be an arbitrary metric space (e.g.: Hyperbolic
pace) equipped with distance metric 𝑑𝑐 (⋅, ⋅), given 𝒙, 𝒚, 𝒛 ∈  , the

Gromov product is defined as: (𝒚, 𝒛)𝒙 = 1
2

(

𝑑𝑐 (𝒙, 𝒚) + 𝑑𝑐 (𝒙, 𝒛) − 𝑑𝑐 (𝒚, 𝒛)
)

.
iven a set of points and fixed 𝒙, we firstly compute pairwise Gromov
roducts 𝐴, then obtain 𝛿 as:

𝛿 = max {(𝐴⊗𝐴) − 𝐴} (12)

here ⊗ denotes the min–max matrix product. To better validate the
ierarchical assumption of the dataset, the relative hyperbolicity 𝛿𝑟𝑒𝑙 is
iven as:

𝑟𝑒𝑙() =
2𝛿()
diam()

. (13)

where diam() is the set diameter (maximal pairwise distance) for
scaling.

4. Method

In this section, we first present the hyperbolic metric learning
paradigm in Section 4.1 and formally present the proposed HPR
in Section 4.2. We present an enhanced metric learning with hyper-
bolic distance, namely Prototype Rectification with Hyperbolic Dis-
tance (HPR-D), in Section 4.2.1. Finally, we further consider the
data distribution in hyperbolic space, i.e., Hyperbolic Wrapped Normal
(HWN) distribution introduced in Section 4.2.2, and propose a novel
metric learning method, namely Prototype Rectification with HWN
Distribution (HPR-WN), in Section 4.2.3.

4.1. Hyperbolic metric learning for FSL

Before presenting the hyperbolic metric learning for FSL, we first
introduce the backbone network for feature embedding, as in Sec-
tion 4.1.1.

4.1.1. Feature embedding network
For feature embedding, selecting a backbone network involves

multi-aspect considerations. DGCNN [25] is a widely adapted backbone
for point cloud analysis. We utilize DGCNN for (1) stronger point-wise
connection on graph compared with other backbones, and (2) fairer
comparison as other methods (See Section 5.3) also utilize DGCNN
as backbone. Same as [14], we only retain the max pooling for the
last few layers of the original DGCNN and obtain the final output with
dimension 𝑚 = 1024, denoted as ‘DGCNN†’. We utilized DGCNN† as the
base backbone for comparisons on different baselines.
5 
Furthermore, another concern is, that features are extracted in
Euclidean metric for DGCNN. To operate in hyperbolic space for hierar-
chical feature embedding and for being more adapted in the following
HPR module, inspired by DHA-Net [40], we utilize the hyperbolic
dynamic graph convolution. We replace the main operations in the
following:

• 𝒌NN-Hyp uses hyperbolic distance to search nearest neighbor
• EdgeConv-Hyp uses hyperbolic metric based edge function
• MLP-Hyp replaces the linear transform with the Möbius trans-

form (adaptation of linear transform in hyperbolic space) and
replaces activation with a hyperbolic activation function.

Table 1 compares different operations in Euclidean and Hyper-
bolic space. Fig. 5 describe the architecture of DGCNN†, DGCNN-Hyp(-
Full). We did not employ a fully hyperbolic metric-based module, as
described in DGCNN-Hyp-Full. For the EdgeConv-Hyp and MLP-Hyp
layers in hyperbolic space, the computational burden increases as the
layer gets propagated with the continually expanding receptive field
of the hyperbolic dynamic graph. For 4-layer DGCNN-Hyp, parameters
become difficult to update from the 2nd layer onwards.

In this way, we consider a trade-off and adopt the DGCNN-Hyp. We
use 𝑘NN based on Euclidean distance for obtaining neighborhood as
an approximation to 𝑘NN-Hyp based on hyperbolic distance. We retain
the first layer of EdgeConv-Hyp and MLP-Hyp, and apply Logarithmic
mapping Log𝑐𝟎(⋅) to map it back into Euclidean space. For the onward
layers, it still operates in Euclidean space, the same as DGCNN†. We
resent their architectures in Fig. 5.

.1.2. Hyperbolic metric learning for FSL
We adopt the hyperbolic metric for feature embedding to capture

ierarchical feature similarity. We use the Poincaré disk model P𝑛
𝑐 of

hyperbolic space as defined in Section 3.2.
Firstly, for an 𝑁-way 𝐾-shot FSL task (see Section 3.1), we are

to obtain 𝑚-dimensional (𝑚 = 1024 in this paper) hyperbolic point
cloud features for further operations. We denote Euclidean features as
{𝒙𝑖𝑠}

𝑁
𝑖=1

𝐾
𝑠=1, 𝒙𝑖𝑠 ∈ R𝑚 and Hyperbolic features as {𝒛𝑖𝑠}

𝑁
𝑖=1

𝐾
𝑠=1, 𝒛𝑖𝑠 ∈ P𝑚

𝑐 ,
oth indicating 𝑠th support feature of 𝑖th class.

Given features 𝒙 obtained from a feature embedding network, we
se exponential mapping Exp𝑐𝟎 ∶ R𝑚 → P𝑚

𝑐 in Eq. (6) to map features
rom Euclidean space to Hyperbolic space, i.e., 𝒛 = Exp𝑐 (𝒙) ∈ P𝑚

𝑐 . After
yperbolic feature 𝒛𝑘, 𝒛𝑙 are obtained, the hyperbolic distance between
s 𝑑𝑐 (𝒛𝑘, 𝒛𝑙) from Eq. (5).

With the hyperbolic metric from Section 3.2, we incorporate metric-
ased FSL methods in the following section, formally introducing HPR.

.2. Hyperbolic Prototype Rectification (HPR)

In this section, we mainly introduce our HPR, branched into hyper-
bolic distance based HPR-D and HWN distribution based HPR-WN. We
first briefly introduce the original ProtoNet and rectification process,
then lead to HPR-D in Section 4.2.1. Furthermore, we illustrate the
HWN distribution and its sampling strategy in Section 4.2.2, and then
propose HPR-WN in Section 4.2.3.

ProtoNet [7] obtains appropriate class prototypes using average
of class features on Euclidean metric, based on a trained feature em-

bedding with a classifier on basic classes. By the nearest prototype
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Fig. 5. Architectures of Feature Embedding Networks. (a) DGCNN† modified from [25], (b) DGCNN-Hyp-Full being a fully hyperbolic module, (c) DGCNN-Hyp balancing between
Euclidean and Hyperbolic modules.
Fig. 6. Prototype rectification.
Fig. 7. The overview of proposed HPR. Feature embedding network, DGCNN† or DGCNN-Hyp as shown in Fig. 5, to obtain features. HPR module, in branched dotted arrows,
for 1⃝ HPR-D for hyperbolic distance based prototype rectification, and 2⃝ HPR-WN for hyperbolic wrapped normal distribution based prototype rectification.
matching, it obtains the 𝐒𝐨𝐟𝐭𝐦𝐚𝐱(⋅) output for classification as follows:

𝑝(𝑦 = 𝑖 ∣ 𝒙𝑞) = 𝐒𝐨𝐟𝐭𝐦𝐚𝐱(𝒙𝑞 ,𝒑) =
exp(−𝑑(𝒙𝑞 ,𝒑𝑖))

∑𝑛
𝑖=1 exp(−𝑑(𝒙𝑞 ,𝒑𝑖))

(14)

where 𝒙𝑞 is the query sample feature and 𝑑(⋅, ⋅) is the Euclidean
distance.

PR [9] uses pseudo-labeled query samples to expand and enhance
the features of the support set, being more robust against outlier
or noise samples, thus avoiding overfitting and reducing biases. Dis-
Calib [10] further includes distributional information. The prototype
rectification process is shown in Fig. 6.

Inspired by these works, considering the potential hierarchical rela-
tionships among point cloud objects, we propose HPR-D and HPR-WN
to rectify prototypes in hyperbolic space in the following (see Fig. 7).

4.2.1. Prototype rectification with hyperbolic distance (HPR-D)
The proposed HPR-D conducts pseudo-labeling on query samples

based on nearest prototype matching, using hyperbolic distance as
spatial relationship.
6 
Hyperbolic prototype forming . Given hyperbolic features 𝒛𝑖𝑗 , hyper-
bolic class prototypes are firstly obtained via averaging operation for
calculating the mean of support samples:

𝑷 𝑖 = 𝐇𝐲𝐩𝐀𝐯𝐠-𝐏(𝒛𝑖𝑗 ∈ 𝑆𝑖) ∈ R𝑚, |𝑆𝑖
| = 𝑛𝑖 (15)

where 𝒛𝑖𝑗 is the hyperbolic feature of the 𝑗th support sample in the
support set 𝑆 𝑖 of class 𝑖.

Pseudo-labeling and enhanced-set forming . Then, we utilize the
𝐒𝐨𝐟𝐭𝐦𝐚𝐱(⋅) output to obtain the pseudo-labels of query features:

𝑝(𝑦 = 𝑖 ∣ 𝒛𝑞) = 𝐒𝐨𝐟𝐭𝐦𝐚𝐱(𝒛𝑞 ,𝑷 ) =
exp(−𝑑𝑐 (𝒛𝑞 ,𝑷 𝑖))

∑𝑛
𝑖=1 exp(−𝑑𝑐 (𝒛𝑞 ,𝑷 𝑖))

(16)

where 𝒛𝑞 is the hyperbolic query sample feature, 𝑑𝑐 (⋅, ⋅) is the hyper-
bolic distance defined in Eq. (5). Then we use the pseudo-labeled query
sample set 𝑄𝑝 to expand the support set 𝑆 and obtain the enhanced
support set 𝑆𝑒 = 𝑆 ∪𝑄𝑝.

HPR based on hyperbolic distance. Hence, the new prototype of the
features of class 𝑖 in 𝑆𝑒 is calculated as hyperbolic average of enhanced
support, i.e., 𝑷 ′ = 𝐇𝐲𝐩𝐀𝐯𝐠-𝐏(𝒛′ ∈ 𝑆𝑖), where 𝒛′ is a hyperbolic feature
𝑖 𝑖𝑗 𝑒 𝑖𝑗
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in 𝑆𝑒 of class 𝑖, |𝑆𝑒| = 𝐧𝑖. Finally, we apply rectified prototypes 𝑷 ′
𝑖

o Eq. (16) for classification.
The above process considers the latent hierarchical relationships of

oint cloud objects. However, similar to the PR [9], this process does
ot generate new samples, and the pseudo-labeled query sample set
s imbalanced in the number of classes. To solve these problems, we
urther utilize the hyperbolic wrapped normal distribution to generate
ovel samples that obey the hierarchical distributional information in
he following.

.2.2. Hyperbolic Wrapped Normal (HWN) distribution
Assuming class samples as a whole follow a normal distribution in

eature space is a common strategy [10]. However, normal distributions
annot be directly utilized in hyperbolic space. There are many types
f normal distributions in Hyperbolic space [36], including Riemannian
ormal (HRN), Wrapped Normal (HWN) distribution, etc.

ationale for choosing HWN . HRN requires a normalizing coefficient,
hile HWN utilizes exponential mapping from tangent space, defined
s transporting points from normal distribution into hyperbolic space:

W
P𝑑𝑐
(𝒛 ∣ 𝝁,𝜮) =

𝑑𝜈W(𝒛 ∣ 𝝁,𝜮)
𝑑(𝒛)

=
(

PT−1
𝟎→𝝁

(

Log𝝁(𝒛)
)

∣ 𝟎,𝜮
)

×

⎛

⎜

⎜

⎜

⎝

√

𝑐𝑑𝑐 (𝝁, 𝒛)

sinh
(

√

𝑐𝑑𝑐 (𝝁, 𝒛)
)

⎞

⎟

⎟

⎟

⎠

𝑑−1

(17)

Our rationale for choosing HWN includes 1⃝ easier to obtain with-
out normalizing coefficient and 2⃝ being coherent with our feature
mbedding process as it is also exponential mapping based. Sampling
ould be conducted once the mean and covariance of the distribution
re obtained, which is detailed below.

ampling from HWN . We introduce the sampling strategy of Hy-
erbolic Wrapped Normal (HWN) distribution [36] prior to HPR-WN
ethod in Section 4.2.3. Given distribution W

P𝑑𝑐
(𝝁𝑖,𝜮∗

𝑖 ), sampling in
HWN involves more complicated but straightforward strategies than
in Euclidean space. Based on the derivation of HWN from Eq. (17)
and operators from Section 3.2, we could sample from the normal
distribution in Euclidean space, then transport onto Hyperbolic space,
as: 1⃝ sample 𝒗 ∼  (𝟎,𝜮∗

𝑖 ) in the tangent space 𝟎P𝑚
𝑐 , 2⃝ move 𝒗 to

= PT𝑐
𝟎→𝝁𝑖

(𝒗) ∈ 𝝁𝑖P
𝑚
𝑐 by parallel transport in Eq. (11), and 3⃝ map 𝒖

o 𝒛 = Exp𝑐𝝁𝑖 (𝒖) ∈ P𝑚
𝑐 by exponential mapping in Eq. (6).

.2.3. Prototype rectification with HWN distribution (HPR-WN)
Based on the HWN, we introduce HPR-WN in the following, as in Al-

orithm 1. We firstly obtain class prototype 𝑷 𝑖 from Eq. (15), and query
amples to be classified using Eq. (16). We then rectify the hyperbolic
rototype 𝑷 𝑖 using the distribution information of the query samples.

Algorithm 1 The HPR-WN for an 𝑁-way-𝐾-shot-𝑀-query task

Input: Hyperbolic Support set features 𝑆 = (𝒛𝑖𝑠 , 𝑦𝑖𝑠 )
𝑁
𝑖=1

𝐾
𝑠=1,

Hyperbolic Query set features 𝑄 = (𝒛𝑖𝑞 , 𝑦𝑖𝑞 )
𝑁
𝑖=1

𝐾+𝑀
𝑞=𝐾+1

utput: New prototypes 𝑷 ′′
𝑖

1: for (𝒛𝑖, 𝑦𝑖) ∈ 𝑆,𝑄 do
2: Form pseudo-query set 𝑄𝑝 using Eq. (16) and expand 𝑆 as 𝑆𝑒 =

𝑆 ∪𝑄𝑝.
3: Obtain mean 𝝁𝑖 and var Σ∗

𝑖 for class 𝑦𝑖 based on Eqs. (18) and
(20).

4: Sample new features from the HWN of Eq. (21) and form 𝑄𝑛.
5: Obtain new support set as 𝑆𝑛 = 𝑆𝑒 ∪𝑄𝑛.
6: Obtain HypAvg-P(⋅) of Eq. (10) for each class 𝑖 of 𝑆𝑛 as 𝑷 ′′

𝑖 .
7: end for
8: return 𝑷 ′′

𝑖

We assume that the features of each class are subject to HWN and
he similar classes admit similar means and variances [10]. Therefore,
 s

7 
to alleviate the bias of prototypes by insufficient samples, we consider
using the distribution of query samples to generate sufficient samples
to expand the support set.

Mean and covariance of enhanced-set . Same as Section 4.2.1, we
firstly obtain the enhanced support set 𝑆𝑒 = 𝑆∪𝑄𝑝. To obtain the HWN
distribution from 𝑆𝑒, we are to obtain (𝝁𝑖,𝜮𝑖), the mean and covariance
or each class 𝑖. The hyperbolic average of the features of class 𝑖 is
alculated as:

𝑖 = 𝐇𝐲𝐩𝐀𝐯𝐠-𝐏(𝒛′𝑖𝑗 ∈ 𝑆𝑖
𝑒), |𝑆 𝑖

𝑒| = 𝐧𝑖 (18)

here 𝒛′𝑖𝑗 is the hyperbolic features in 𝑆 𝑖
𝑒 of class 𝑖 and 𝝁𝑖 is taken as

he mean of the HWN.
Given the covariance matrix 𝜮 is invariant in transforming between

uclidean and Hyperbolic space [36], the covariance matrix 𝜮𝑖 of class
can be directly taken from Euclidean space:

𝑖 =
1

𝐧𝑖 − 1

𝐧𝑖
∑

𝑘=1
(𝒙𝑘 − 𝝁′

𝑖)(𝒙𝑘 − 𝝁′
𝑖)
⊤ ∈ R𝑚×𝑚 (19)

where 𝒙𝑘 is the original Euclidean feature, recall 𝒛𝑘 = Exp𝑐𝟎(𝒙𝑘), 𝝁
′
𝑖 =

1
𝐧𝑖

∑𝐧𝑖
𝑘=1 𝒙𝑘 is the average of the 𝑖th class in Euclidean space.

Trading-off between efficiency and performance. There are possible
options. 1⃝ Diagonalization reduces the parameter number from 𝑚2 to
𝑚, still preserving anisotropic property and variance of same dimension
features, meanwhile reducing around half of sampling time. 2⃝ Isotropic
further reduces the parameter number to 1, but performs worse as
it deviates more from complete Σ, also isotropic process involves
a similar amount of time as diagonalization. Therefore, we employ
diagonalization 𝐝𝐢𝐚𝐠(⋅) on each class 𝑖 in 𝑆𝑒:

𝜮∗
𝑖 = 𝐝𝐢𝐚𝐠(𝜮𝑖) ∈ R𝑚 (20)

Sample generation and new-set forming . After obtaining the mean
and the covariance of each class, we can generate features from HWN
for class 𝑖 as:

NH
𝑖 = {𝒛 ∣ 𝒛 ∼ W

P𝑚𝑐
(⋅ ∣ 𝝁𝒊,𝜮∗

𝑖 )} (21)

Then more diverse labeled samples can be generated for class 𝑖 by
sampling from the distribution NH

𝑖 . During actual implementation, we
rely on the sampling process shown in Section 4.2.2, and generate the
same number of samples for each class to avoid class imbalance issues.

In general, the classification based on class prototypes is subject
to misclassification. Intuitively, to reduce the impact of misclassified
samples on the results, we introduce the top-𝒌 setting. We perform
the filtering strategy, using 𝒌-NN based on the hyperbolic distance to
prototypes for each class to selectively choose the generated features,
that are assumed to have a higher probability of belonging to the class,
thereby enhancing subsequent classification performance. We denote it
as ‘top-𝒌 HPR-WN’.

The generated pseudo-labeled samples of each class form 𝑄𝑛, which
is used to expand each class sample in the support set 𝑆𝑒 to obtain a
new support set 𝑆𝑛 = 𝑆𝑒∪𝑄𝑛 = 𝑆∪𝑄𝑝∪𝑄𝑛. In this way, we can alleviate
the lack of support samples and enrich the diversity of the samples.

Prototype rectification with new-set samples. Once 𝑆𝑛 is available, the
prototype 𝑷 ′

𝑖 of class 𝑖 in 𝑆𝑛 can be calculated as 𝑷 ′′
𝑖 = 𝐇𝐲𝐩𝐀𝐯𝐠-𝐏(𝒛′′𝑗 ∈

𝑆 𝑖
𝑛), |𝑆𝑖

𝑛| = n𝑖, where 𝒛′′𝑖𝑗 is the feature of the 𝑗th sample in 𝑆𝑖
𝑛 of class 𝑖.

Then 𝑷 ′′
𝑖 is used as the rectified class prototype, and final classification

can be performed by applying 𝑷 ′′
𝑖 to Eq. (16).

5. Experiments

In this section, we compare the proposed methods, i.e., HPR-D
nd HPR-WN, with the representative FSL methods [7,13–15,30,32],
ncluding state-of-the-art methods, on four datasets. Extensive ablation

tudies evaluated the effectiveness and generalization ability of HPR.
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Table 2
Dataset description for our experiments.
Dataset Source of data # Class # Object

ModelNet40 [42] Sampling from CAD model 40 12 308
ModelNet40-C [43] Perturbed in density 40 12 308
ScanObjectNN [44] Real-World indoor scanning 15 2902
ScanObjectNN-PB [44] (PB_T50_RS) Perturbed in translation, rotation, and scaling 15 14 510
5.1. Datasets

Description of dataset . We describe the dataset for our experiments
statistically in Table 2. ModelNet40(-C) [42,43] are sampled from
CAD models, which are more regular. ScanObjectNN(-PB) [44] are
obtained from real-world scanning, from which our model’s perfor-
mance in the real world could be tested. ModelNet40-C [43] and
ScanObjectNN-PB [44] are perturbed intentionally from the original
dataset to demonstrate the robustness of our model. For reproducing
real-world existing perturbations, we employed the density corruption
of ModelNet40-C [43], and ScanObjectNN-PB [44] containing up to
50% of random translation, as well as perturbation in rotation and
scaling.

Preprocessing of dataset . For few-shot classification, it is common to
split the dataset classwisely for training and testing, respectively [15].
We split ModelNet40(-C) [42,43] into 4 groups, each with 10 classes;
and ScanObjectNN(-PB) [44] into 3 groups, each with 5 classes. We
select one group as the testing set and the rest as the training set for
each dataset. For sampling, 1024 points are uniformly sampled and
normalized to the unit sphere.

5.2. Implementation details

Hardware & software. Experiments are performed on a single Nvidia
GeForce V100 GPU, with a CUDA version of 11.1, Pytorch version of
1.10.0, Python version of 3.6.13, and the system being CentOS 7.

FSL training details. The experiments are based on the standard task-
based FSL setting in Section 3.1. For more fair comparison, follow-
ing [13], we set 100 epochs, for each epoch: 1⃝ Meta-training. contains
400 tasks randomly sampled from the basic classes. Simultaneously,
we apply random rotating and jittering to augment samples. 2⃝ Meta-
testing. We randomly sampled 700 tasks from the novel classes. Specif-
ically, for experiments on ModelNet40-C, we utilize original Model-
Net40 samples for meta-training and density-corrupted samples for
meta-testing to demonstrate robustness.

Hyperparameter settings. The input batch size is set to 32. All exper-
iments adopt the Adam optimizer with an initial learning rate (lr) of
1e−3 and 𝛾 = 0.8 as the lr coefficient, that learning rate decreases every
5 epochs. Selecting proper curvature 𝑐 allows us to balance between Hy-
perbolic and Euclidean geometries. For HPR(-D/WN), following [18],
we set curvature 𝑐 to 0.01 for 5-way 1-shot tasks and 0.005 for 5-way
5-shot tasks. We set the number of generated samples from HWN for
each class as 40. This is validated in our experiments in Fig. 11(a)(b).

Evaluation. The accuracy presented in all results on accuracy is the
average over meta-testing with 95% confidence intervals, with results
presented as ‘result±std.’, the standard from multiple experiments.

5.3. Results and analysis

General results. Tables 3 and 4 are results of few-shot learning
experiments on 4 datasets with 5-way-𝐾-shot-10-query, 𝐾 = 1, 5
settings. ‘DGCNN*’ denotes the improved DGCNN in [14] modifying
the average/max pooling layers, note that we do not include the
image backbone for a fairer comparison. DGCNN† and DGCNN-Hyp are
mentioned in Section 4.1.1 and in Fig. 5.
8 
Dgcnn†based. On the ModelNet40 and ModelNet40-C datasets, the
average accuracy of our methods compared with SOTA CrossMod [14]
is about 1.48% lower under 1-shot setting and about 0.37% higher
under 5-shot setting. On the ScanObjectNN and ScanObjectNN-PB, the
average accuracy of our methods compared with SOTA ViewNet is
about 0.50% and 0.29% higher under the 1-shot setting and about
3.66% and 1.02% higher under the 5-shot setting.

DGCNN-Hyp based. Compared with DGCNN† within our method,
DGCNN-Hyp outperforms half of the results in Tables 3 and 4, and
brings up to 0.28% improvement, which is a bit limited. Considering
that operations on hyperbolic space involve vast exponential calcula-
tion for the feature embedding network, we continue using DGCNN† as
the feature embedding network in the following.

Analysis. Our methods heavily rely on the feature embedding capabil-
ity of the backbone network, whereas CrossMod [14] takes into account
the relationship between support and query features (mutual attention)
after the backbone network, and CIA [13] also applied cross-instance
module, benefiting effective features. ViewNet [15] completely rely
on view-projected images, which fails to consider unique properties
in 3D point cloud. Therefore, under the 1-shot setting, our methods
perform worse on ModelNet40 and ModelNet40-C datasets. However,
as the number of support set samples increases, features extracted by
the embedded network become more accurate. In such a more accurate
feature space, our methods bring greater improvements by obtaining a
more suitable prototype, outperforming existing methods without any
extra module.

For the ScanObject-NN and ScanObjectNN-PB datasets, results pre-
sented tend to be more sensitive to noise, leading to biases on pro-
totypes, reflected in a larger accuracy gap to that obtained from
ModelNet40(-C). In this case, the proposed methods are capable of find-
ing more accurate class prototypes, effectively improving classification
accuracy, and thus outperforming baselines.

In general, we achieve SOTA results on point-based methods on
4 datasets. Including the comparison of the view-based method, we
achieve SOTA results on real-world ScanObjectNN(-PB) datasets and
demonstrate high robustness against perturbations. Further experi-
ments are conducted below.

5.4. Ablation study

This section presents ablation studies on the effectiveness of our
methods.

Regarding hyperbolic embedding and prototype rectification. Table 5
presents detailed comparisons of HPR variants, including those in
Euclidean space. The ‘PR’ and ‘PR-N’ denote the prototype rectification
based on Euclidean distance and normal distribution, respectively.
For a fair comparison, PR only uses intra-class bias elimination [9]
in relevant experiments. The HyperProtoNet outperforms ProtoNet by
around 0.07%∼1.66%. The average accuracy of our HPR-D and HPR-
WN is about 0.61% and 0.19% higher than the corresponding PR
and PR-N, respectively. In visualization, Fig. 8(a),(b) shows the t-
SNE visualization between ProtoNet and HyperProtoNet, indicating
the higher discrimination of Hyperbolic embedding, providing a more
precise metric space for few-shot point cloud classification tasks with
the hierarchical prior and improves performance. Fig. 9(a), (b) shows
the t-SNE visualization before and after prototype rectification. It ex-
plicitly demonstrates the effectiveness of rectification, further enlarging

discrimination, while being more robust to the entire class.
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Table 3
Few-shot classification accuracy with 95% confidence intervals on ModelNet40 and ModelNet40-C. Bold denotes optimal result. Within our
methods, underline denotes optimal, and

⁓⁓⁓⁓⁓⁓⁓
underwave denotes suboptimal.

Method Year Backbone ModelNet40 ModelNet40-C

5way-1shot 5way-5shot 5way-1shot 5way-5shot

ProtoNet [7] 2017 DGCNN 79.46 ± 0.76 88.65 ± 0.54 77.69 ± 0.77 86.81 ± 0.58
RelationNet [32] 2018 DGCNN 77.46 ± 0.80 85.11 ± 0.61 – –
MetaOptNet [30] 2019 DGCNN 75.77 ± 0.83 86.44 ± 0.62 73.34 ± 0.85 85.15 ± 0.63
CIA [13] 2022 DGCNN 83.46 ± 0.83 89.15 ± 0.50 80.64 ± 0.86 88.23 ± 0.54
CrossMod [14] 2023 DGCNN* 83.89 ± 0.75 90.64 ± 0.52 81.87 ± 0.78 89.51 ± 0.54
ViewNet [15] 2023 ViewNet 82.68 ± 0.80 89.64 ± 0.55 81.05 ± 0.78 88.75 ± 0.49

HPR-D (ours) / DGCNN†
⁓⁓⁓
83.34

⁓⁓
±

⁓⁓⁓
0.78

⁓⁓⁓
90.64

⁓⁓
±

⁓⁓⁓
0.52 79.37 ± 0.79 90.24 ± 0.50

DGCNN-Hyp 83.40 ± 0.77 90.66 ± 0.52 79.35 ± 0.80
⁓⁓⁓
90.20

⁓⁓
±

⁓⁓⁓
0.49

HPR-WN (ours) / DGCNN† 83.03 ± 0.75 90.34 ± 0.50
⁓⁓⁓
80.00

⁓⁓
±

⁓⁓⁓
0.74 90.00 ± 0.51

DGCNN-Hyp 83.10 ± 0.76 90.38 ± 0.51 80.08 ± 0.73 89.92 ± 0.50
Table 4
Few-shot classification accuracy with 95% confidence intervals on ScanObjectNN and ScanObjectNN-PB. Bold denotes optimal result. Within
our methods, underline denotes optimal, and

⁓⁓⁓⁓⁓⁓
underwave denotes suboptimal.

Method Year Backbone ScanObjectNN ScanObjectNN-PB

5way-1shot 5way-5shot 5way-1shot 5way-5shot

ProtoNet [7] 2017 DGCNN 60.46 ± 0.67 70.20 ± 0.52 59.29 ± 0.65 67.68 ± 0.47
RelationNet [32] 2018 DGCNN 54.23 ± 0.63 66.72 ± 0.50 – –
MetaOptNet [30] 2019 DGCNN 61.12 ± 0.66 67.73 ± 0.45 57.15 ± 0.63 65.56 ± 0.50
CIA [13] 2022 DGCNN 62.17 ± 0.68 71.31 ± 0.45 57.02 ± 0.68 67.37 ± 0.49
CrossMod [14] 2023 DGCNN* 64.69 ± 0.64 74.60 ± 0.43 60.25 ± 0.63 71.00 ± 0.47
ViewNet [15] 2023 ViewNet 66.48 ± 0.60 74.77 ± 0.45 – –

HPR-D (ours) / DGCNN† 66.04 ± 0.61
⁓⁓⁓
78.43

⁓⁓
±

⁓⁓⁓
0.46 60.54 ± 0.64 71.34 ± 0.48

DGCNN-Hyp 66.12 ± 0.60 78.49 ± 0.46
⁓⁓⁓
60.50

⁓⁓
±

⁓⁓⁓
0.65 71.42 ± 0.48

HPR-WN (ours) / DGCNN† 66.98 ± 0.68 78.00 ± 0.45 60.15 ± 0.64
⁓⁓⁓
72.02

⁓⁓
±

⁓⁓⁓
0.49

DGCNN-Hyp
⁓⁓⁓
66.70

⁓⁓
±

⁓⁓⁓
0.68 78.14 ± 0.45 60.09 ± 0.63 72.05 ± 0.49
Table 5
Ablation study of HPR on ModelNet40 and ScanObjectNN datasets with different variants, comparing 1⃝ metric space, 2⃝ spatial
relationship/distributional information, and 3⃝ sampling strategy. Bold denotes optimal results, and underline denotes suboptimal results.

Method Backbone ModelNet40 ScanObjectNN

5way-1shot 5way-5shot 5way-1shot 5way-5shot

ProtoNet [7] DGCNN† 80.65 ± 0.74 90.37 ± 0.50 64.10 ± 0.57 76.24 ± 0.44
HyperProtoNet [41] DGCNN† 80.72 ± 0.72 90.47 ± 0.48 65.31 ± 0.59 77.90 ± 0.45
PR [9] DGCNN† 82.77 ± 0.79 90.62 ± 0.54 65.34 ± 0.64 77.29 ± 0.44

HPR-D (ours) DGCNN† 83.34 ± 0.78 90.64 ± 0.52 66.04 ± 0.61 78.43 ± 0.46
PR-N (ours) DGCNN† 83.03 ± 0.77 90.62 ± 0.54 65.36 ± 0.64 77.27 ± 0.43
HPR-WN (ours) DGCNN† 83.03 ± 0.75 90.34 ± 0.50 66.98 ± 0.68 78.00 ± 0.45
HPR-WN top-𝒌 (ours) DGCNN† 83.01 ± 0.75 90.30 ± 0.50 66.81 ± 0.70 78.00 ± 0.47
Fig. 8. The t-SNE visualization of (a), (b): the feature embeddings for different spaces. All visualizations use the ModelNet40 dataset, with 50 query samples for each of 5 classes,
i.e., 50 × 5 samples in total.
9 
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Fig. 9. The t-SNE visualization of and (a), (b): before and after prototype rectification. All visualizations use the ModelNet40 dataset, with 50 query samples for each of 5 classes,
i.e., 50 × 5 samples in total.
Fig. 10. (a), (b): The effect of the curvature parameter. Accuracy on ModelNet40 and
ScanObjectNN for (a) 1-shot setting and (b) 5-shot setting when increasing the curvature
(horizontal axis) of hyperbolic space.

Regarding curvature of the model. Reviewing the definition of the
Poincaré disk in Section 3.2, curvature controls the size of the Poincaré
disk, smaller curvature leads to a larger size of the Poincaré disk.
A proper curvature could balance between Euclidean and Hyperbolic
geometry. In comparison to the 1-shot setting, the 5-shot setting has a
larger sample size, requiring a larger capacity of disk for embedding,
hence a smaller curvature would be more effective. Fig. 10(a)(b) shows
the effect of curvature of Poincaré disk. For the performance on two
datasets, as curvature increases, they all experience growth in perfor-
mance firstly, followed by a steady decrease. As different 𝐾s lead to
different sample sizes, selecting proper 𝑐 could better embed different
sizes of data. We set 𝑐 = 0.01 for 𝐾 = 1, and 𝑐 = 0.005 for 𝐾 = 5 for the
results presented in previous experiments.

Regarding HPR-WN . Table 5 shows the comparison results between
HPR and other baseline methods. Compared with ProtoNet and Hy-
perProtoNet, the proposed methods achieve around 0.17%∼2.88% im-
provement on ModelNet40 and ScanObjectNN under all settings. The
improvement brought by the HPR-WN is greatly reduced under the 5-
shot setting, which indicates that the prototypes are already accurate
with more support samples. Overall, our methods achieve a satisfying
rectification effect on class prototypes with improved generalization
ability. Fig. 11(a)(b) shows the effect of the number of features gen-
erated by HWN. With increasing sampling number 𝒌, the classification
accuracy initially rises before stabilizing, indicating the benefit of ap-
propriate 𝒌 for balance between performance and efficiency. Relatively
high accuracy and low computation cost are obtained when 𝒌 = 40,
being utilized for HPR-WN setting. Furthermore, for the top-𝒌 HPR-WN
setting, following the same consideration and validated by experiments,
we sample 70 samples and obtain 40 samples.
10 
Fig. 11. (a), (b): The effect of the number of generated features. Accuracy on
ModelNet40 and ScanObjectNN for (a) 1-shot setting and (b) 5-shot setting when
increasing the number (horizontal axis) of generated features.

As is shown in Table 5, HPR-WN does not bring full improvement
among HPR-D. We assume that the sampling process introduces bias
against the original samples, resulting in generated samples deviat-
ing from the original samples. Table 6 presents our computation on
𝛿-hyperbolicity [18] (a metric on the degree of hierarchy) using dif-
ferent data. It confirmed our assumption, as new samples show lower
hyperbolicity.

Additionally, compared with HPR-WN without top-𝒌, the assistance
of top-𝒌 setting does not yield any better results. This could be because
the learned features already have high intra-class variance and low
inter-class variance. Selecting the top-𝒌 features based on distance does
not effectively improve the accuracy of pseudo labels of generated
features nor brings effective improvements in the results. This suggests
that relying solely on distance-based criteria for class belonging is
inaccurate.

6. Discussion

6.1. Shortcomings & limitations

During the research, there are still some insufficiencies and many
areas worth further exploration: 1⃝ The calculation in hyperbolic space
is more costly than in Euclidean space. Although numerous simpli-
fications are used in our work, some calculation can still be further
optimized. Also, exploring a better hyperbolic feature embedding mod-
ule (beyond DGCNN), while combining with strategies like support-
query attention, could further improve the results. 2⃝ The HPR-WN
generated samples does not fully conform point cloud prior distribu-
tion, and its top-𝒌 setting does not obtain the expected effect. Further
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Table 6
Comparison of relative hyperbolicity 𝛿𝑟𝑒𝑙 on different data, ‘HWN generated’ indicates samples generated from HWN distribution. All are obtained
from an average of 40 batches (batch size is 32). 𝛿𝑟𝑒𝑙 → 0 indicate a stronger hyperbolicity of the data.
Data HWN generated ModelNet40 ModelNet40-C ScanObjectNN ScanObjectNN-PB

𝛿𝑟𝑒𝑙 0.10 0.24 0.23 0.22 0.26
investigation on distributional rectification strategy in hyperbolic space
holds promise. 3⃝ More visualization beyond presented t-SNE on the
ierarchical structure could benefit the description of the hierarchical
ature of point clouds. 4⃝ While our methods achieve satisfying results
n the mentioned benchmarks, we still admit the possible biases exist
n these currently widely used datasets due to limited class number. It
ould be validated more comprehensively with datasets of larger class
umber, which could also further validate the generalization ability.

Overall, although model performance and efficiency could be fur-
her improved, we do not observe any weakness that could affect our
esult by a significant level. Experiments are validated multiple times
or one result with deviation presented.

.2. Future perspectives

Our work demonstrated the effectiveness of hyperbolic space for
oint cloud embedding and few-shot learning. Besides the further ad-
ancement in our approach, it could be combined with other methods,
ike the existing ones we compared. Also, its potential can be further
xplored in more complicated tasks in open-world learning (OWL) [45],
ncluding zero-shot learning (ZSL), class-incremental learning (CIL) and
pen-set recognition (OSR).

. Conclusion

Deep learning for few-shot point cloud classification faces chal-
enges in overfitting, generalization, and robustness. In this paper, we
tilize hyperbolic space as a hierarchical structural geometric prior for
ierarchical feature representation and propose a novel HPR method
or few-shot point cloud classification combined with metric-based few-
hot learning. Compared with existing methods, our HPR requires no
ther operation than exponential mapping and uses features directly
xtracted from points. The experiments verify that hyperbolic space
rovides a more accurate metric space few-shot point cloud classifica-
ion. Also, extensive experiments demonstrate that the proposed HPR
chieves satisfying results, exhibiting higher robustness for noises and
erturbations with state-of-the-art results. It also states the potential for
oint-based methods against projection-based methods.

During the systematic attempt to use hyperbolic metrics for 3D point
loud FSL, we experienced several limitations. Our method puts the
ain focus on post-feature embedding and lacks consideration of the

eature embedding process. Even though a variant of backbone network
perating in hyperbolic space is introduced, it is a trade-off against
omputational burden. Designing efficient backbone networks better
uited for hyperbolic space is a future direction, benefiting tasks beyond
SL, into open-world learning tasks. Besides, the distribution-based
ectification did not obtain the expected results due to the complex
tatistical and geometrical aspects of the data. It is worth further
nvestigation and method development.
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